Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Annals of Laboratory Medicine ; : 142-147, 2020.
Article Dans Anglais | WPRIM | ID: wpr-762473

Résumé

BACKGROUND: Although the incidence of tuberculosis (TB) is decreasing, cases of multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB continue to increase. As conventional phenotype drug susceptibility testing (pDST) takes six to eight weeks, molecular assays are widely used to determine drug resistance. we developed QuantaMatrix Multiplexed Assay Platform (QMAP) MDR/XDR assay (QuantaMatrix Inc., Seoul, Korea) that can simultaneously detect mutations related to both first- and second-line drug resistance (rifampin, isoniazid, ethambutol, fluoroquinolones, second-line injectable drugs, and streptomycin). METHODS: We used 190 clinical Mycobacterium tuberculosis (MTB) strains isolated from Myanmar, compared QMAP and pDST results, and determined concordance rates. Additionally, we performed sequence analyses for discordant results. RESULTS: QMAP results were 87.9% (167/190) concordant with pDST results. In the 23 isolates with discordant results, the QMAP and DNA sequencing results completely matched. CONCLUSIONS: The QMAP MDR/XDR assay can detect all known DNA mutations associated with drug resistance for both MDR- and XDR-MTB strains. It can be used for molecular diagnosis of MDR- and XDR-TB to rapidly initiate appropriate anti-TB drug therapy.


Sujets)
Diagnostic , ADN , Résistance aux substances , Traitement médicamenteux , Éthambutol , Tuberculose ultrarésistante aux médicaments , Fluoroquinolones , Incidence , Isoniazide , Myanmar , Mycobacterium tuberculosis , Phénotype , Séoul , Analyse de séquence , Analyse de séquence d'ADN , Tuberculose , Tuberculose multirésistante
2.
Journal of Korean Medical Science ; : 1673-1683, 2016.
Article Dans Anglais | WPRIM | ID: wpr-80080

Résumé

Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.


Sujets)
Séquence nucléotidique , Dermatoglyphes , Génome , Santé mondiale , Méthodes , Typage moléculaire , Mycobacterium tuberculosis , Mycobacterium , Réaction de polymérisation en chaîne , Polymorphisme de restriction , Séquences répétées d'acides nucléiques , Séquences répétées en tandem , Tuberculose
3.
Annals of Laboratory Medicine ; : 494-499, 2015.
Article Dans Anglais | WPRIM | ID: wpr-110967

Résumé

BACKGROUND: Tuberculosis (TB) is one of the most serious health problems in Myanmar. Because TB drug resistance is associated with genetic mutation(s) relevant to responses to each drug, genotypic methods for detecting these mutations have been proposed to overcome the limitations of classic phenotypic drug susceptibility testing (DST). We explored the current estimates of drug-resistant TB and evaluated the usefulness of genotypic DST in Myanmar. METHODS: We determined the drug susceptibility of Mycobacterium tuberculosis isolated from sputum smear-positive patients with newly diagnosed pulmonary TB at two main TB centers in Myanmar during 2013 by using conventional phenotypic DST and the GenoType MTBDRplus assay (Hain Lifescience, Germany). Discrepant results were confirmed by sequencing the genes relevant to each type of resistance (rpoB for rifampicin; katG and inhA for isoniazid). RESULTS: Of 191 isolates, phenotypic DST showed that 27.7% (n=53) were resistant to at least one first-line drug and 20.9% (n=40) were resistant to two or more, including 18.3% (n=35) multidrug-resistant TB (MDR-TB) strains. Monoresistant strains accounted for 6.8% (n=13) of the samples. Genotypic assay of 189 isolates showed 17.5% (n=33) MDR-TB and 5.3% (n=10) isoniazid-monoresistant strains. Genotypic susceptibility results were 99.5% (n=188) concordant and agreed almost perfectly with phenotypic DST (kappa=0.99; 95% confidence interval 0.96-1.01). CONCLUSIONS: The results highlight the burden of TB drug resistance and prove the usefulness of the genotypic DST in Myanmar.


Sujets)
Humains , Résistance aux substances , Génotype , Myanmar , Mycobacterium tuberculosis , Rifampicine , Expectoration , Tuberculose
SÉLECTION CITATIONS
Détails de la recherche